GeoTargeting Social Services

Leveraging Spatial Analysis to Optimize the Efficacy of Child Welfare Service Planning and Delivery

Presented to: LA County GIS Day

11-16-2011

Loc H. Nguyen

Inter-University Consortium
Department of Social Welfare
UCLA Meyer and Renee Luskin School of Public Affairs

Dan Goldberg

Spatial Sciences Institute
University of Southern California
http://spatial.usc.edu
dwgoldbe@usc.edu

Project Motivation

- Several options may be available when a child must be placed in the care of DCFS OR
- Several children may need to be placed and the number of placements may be limited
- Social work professionals must balance
 - Maximizing delivery of services to meet child-specific needs
 - Access to services in appropriate languages, for specific disabilities, for specific health, mental health and education needs
 - Overall DCFS resources
 - Equitable, efficient, and effective utilization of DCSF services
- The key is to optimize the location of child placement by maximizing
 - Safety, permanence and well-being of
 - any specific child in DCFS care AND all children in DCFS care
 - Utilization of DCFS resources

The Context

The Challenge(s)

- How can we quantitatively define and compute measures of "Quality of care" (QoC)?
 - What aspects of a child placement affect the quality of care they receive or perceive?
 - Distance from child's parent/family
 - Location within or distance from child's school district
 - Access to specialized services (languages, special needs)
 - Proximity to public transportation
 - Proximity to visitation centers and sites
 - Which aspects can be objectively measurable?
 - Geographically-based (distance, availability)

The Challenge(s)

- How can we use QoC metrics to predict an optimum child/placement?
 - It is unknown what demand will be
 - Number of children
 - Characteristics of any specific child (history, language, disability)
 - The supply is always changing
 - DCFS resources (close, move, merge)
 - DCFS employees with specific skills (come, go)
 - Transportation variability (freeway closures, bus lines shut down)

Opportunities

- Geographic metrics are important indicators of quality of care
 - Distance to parent (transportation costs)
 - Remaining in the same school district
 - Proximity and accessibility to specialized services (transportation costs)
 - Classic GIS site-suitability selection modeling

- Geographic metrics can be derived in advance of a child/placement to rank available options
 - Merging GIS research and modeling to enable research-based, data-informed decision making
- But what are the geographic criteria that matter?

Enabling an Evidence-Based Approach – Defining Model Criteria

- Convene a meeting of experts to:
 - Identity, rank, and weight QoC criteria
 - $\langle x_1, x_2, x_3, ... x_i \rangle$ are each of the *i* criteria
 - $w(x_i)$ is the weight for the i th criteria
 - $r(x_i)$ is the rank for the i th criteria

$$x_{dist} = \sqrt{(a_1 - a_2)^2 + (b_1 - b_2)^2}$$

- Understand annual caseload characteristics
 - Number of children
 - Frequencies of specific types of needs (languages, handicapped services, etc.)
- Understand annual DCFS resource variability
 - Frequency of specialized staff turnover
 - Frequency of closing, opening, merging, etc.

Informing Better Placement Choices

Placement that is closest to school

Criteria which would not be immediately obvious just looking at distance to school alone

★ - Sites and services that are important for child

- Placement in same school district
 - On the bus line to parent
 - On the bus line to a visitation sites/centers
 - Close to specialized services

Model Construction

- Build a model to rank placement options given:
 - A set of j placement options, $p_j \in P$
 - Snapshot of the state of DCFS resources (locations, services, availability)
 - Child-specific criteria
 - Languages, special needs, school/parent locations
 - For a specific child c_i and a specific placement options $p_j \in P$
 - The placement rank should be a function of the sum of the $\langle x_1, x_2, x_3, ... x_i \rangle$ criteria that are applicable for the child and the degree to which x_i is satisfied for the child, $d(x_i)$,

Travel distance | proximity to parent | Same school district

$$F(c_i, p_j) = \sum_{i=1}^{n} \frac{1}{r(x_i)} * w(x_i) * d(x_i), \forall p_j \in P$$

Model Application – Ranked Placement Options

- Each potential placement will be ranked in order of QoC
- Can be used as a guide for placement selection
- Standard weights
 - determined by a group of experts
- Ability to change weights
 - based on what is important for a specific child

The Plan (continued)

- Evaluate the system:
 - Synthetic demand data set (cases)

- Synthetic supply data set
 - DCFS resources
 - Transportation networks
 - Street closures
- (Monte-Carlo trials)
 - Per-child criteria evaluation
 - System-wide criteria evaluation
 - Average child evaluation
 - Resource utilization

Model Evaluation – County-Wide Metrics

 Each model run will produce a different County-wide utilization pattern

Can derive confidence intervals for model predications from the variance between these outcomes

Next Steps

- Engage professionals to help develop the model
 - Academic researchers
 - DCFS professionals
 - Identify which criteria are important and at what levels
- Build and evaluate the model and system on simulated data
- Incorporate real-world data from DCFS to build a better model
 - Facility locations
 - Caseload characteristics
 - Outcome data
 - To show that better placements bring down the length of time a child is in DCFS care

Project Team

- Project Partners
 - Laura Abrams (UCLA)
 - Bridget Freisthler (UCLA)
 - Jacquelyn McCroskey (USC)
 - Gokul Mandayam (USC)
 - Loc Nguyen (UCLA/IUC)

- Project Funding
 - USC Provost Grant Advancing Scholarship in the Humanities and Social Sciences

Questions?

Comments?

Suggestions?

Volunteers?

Questions?

THANKS FOR LISTENING

